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There is a discrepancy between the fcc-bce phase boundaries in Xe determined by the two-phase and the
\-integration methods. To resolve this issue, I performed large scale (4 X 10° atoms) molecular-dynamics
simulations of fcc and bce Xe phases embedded in liquid Xe. Such simulations, which I call N-phase method,
allows for the hydrostatic freezing or melting and direct competition of the phases under consideration. As a
result of these long (over several nanoseconds) simulations, I can place the triple fcc-bee-liquid point on the
melting curve of Xe between temperatures of 3470 and 4000 K. This suggests that certain effects are not taken
into account in the previous work. Possible reasons are discussed.
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I. INTRODUCTION

A computation of phase diagram forms a basis of compu-
tational materials science. Such a computation involves two
ingredients: namely, an interaction model of a material and a
method to treat the model. Method, in the context of this
paper, means not only a particular computational algorithm
but also its particular application. Any practical realization of
a method might produce certain errors that might not be
intrinsic to the method as an algorithm as such but rather to
its practical implementation. Ideally, when both the method
and the interaction model are adequate, the computed phase
diagram is reliable. Therefore, whenever a discrepancy is
encountered between different methods when employing the
same interaction model, it is critical to find out the reason as
soon as possible. Until then, none of the methods can be
trusted entirely. Such a discrepancy has recently emerged
when computing phase diagram of Xe in the high-pressure
(P) and high-temperature (7) ranges. High-PT phase dia-
gram (Fig. 1) was computed first by the two-phase method'
to explain the experimental diamond-anvil cell (DAC) data.’
By applying an effective exp-6 pair potential and two-phase
method,? the experimental data was explained by tempera-
ture induced transition from the face-centered-cubic (fcc)
phase to the body-centered-cubic (bec) phase. The computed
diagram of Xe was substantiated further* by computing a
number of Xe properties in very good agreement with
experiment.* The melting curve was also computed by ab
initio molecular-dynamics (MD) simulations.’ The two-
phase method proved to be a reliable method for calculating
a melting phase boundary for a number of substances, such
as MgSiO; perovskite,>® Al,05,7 Fe® LiF° Cu,'® H,,"
LiH,'? generic Lennard-Jonesium,"? Al,'* MgO," Pb,'¢ and
Mo.!7 Note that melting curves of Xe computed by the two-
phase and the A methods'® (also known as the Ladd-Frenkel
method'®) are very close. However, application of these
methods in computing the position of the triple fcc-bee-
liquid point led to completely different results. While Saija
and Prestipino!® (SP) placed that point at the temperature of
about 4700 K, two-phase simulations positioned that point at
about 2700 K (Fig. 1). This is a very large difference and
reasons for such scatter have to be found out as well as the
position of the triple point.
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The Ladd-Frenkel method consists in the calculation of
the Helmholtz free energy for each phase as a function of
volume and temperature. From this information, a complete
phase diagram can be retrieved. For the system with a given
interatomic potential, it is accomplished by first choosing a
system with a reference potential with the known free en-
ergy. Then, by gradually switching from the reference poten-
tial to the potential of interest and by performing the A inte-
gration over the intermediate states, one can compute the
difference of free energies between the reference system and
the system of interest, and, in such a way, compute the free
energies of both phases.

Before proceeding, it is important to understand what is
the relationship between the two-phase and the Ladd-Frenkel
methods. Both methods belong to the so-called computer ex-
periment category so one can perform the comparison by
making the parallel to a real experiment. The two-phase
computer experiment is similar to the experiment where
melting or solidification is observed directly. In such experi-
ment an investigator is most often unaware of the Gibbs/
Helmholtz energies of the solid and liquid phases he or she
observes. Such knowledge is completely unnecessary as
soon as the nature of both phases as well as the thermody-
namic conditions of the transition can be reliably determined.
There is yet another experimental way to determine such an
equilibrium: namely, one can measure equation of state, en-
thalpy, heat capacities, heat of fusion, etc. for liquid and solid
phases, and then, by computing the Gibbs/Helmholtz ener-
gies, determine the conditions where these energies are
equal. While the two-phase method is similar to the direct
observation of the transition, the Ladd-Frenkel method is
similar to the latter experimental approach.

In what follows, I introduce a different method, which I
call the N-phase method. Using this method, I showed that
the statistical errors of the SP paper are too optimistic. The
temperature of the bce-fee-liquid triple point is much lower
than that provided in the SP paper. I also show that the error
in SP paper is comparable to the error of the two-phase
method. I present results of large scale MD simulations
where all three possible phases are present. I analyzed results
of these simulations and discussed the reasons for the dis-
crepancies. I concluded by discussing the perspectives of the
introduced N-phase method.
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FIG. 1. MD calculated melting data (filled circles) and the fec-bee transition (dashed line) compared with experimental data (open
circles). The MD melting data was fitted using the Simon (Ref. 4) equation in two separate ranges: from 0 to 25 GPa, and from 25 GPa up
to 90 GPa. The fit is shown by solid curves. The uncertainty in determining the melting temperatures corresponds approximately to the size
of filled circles. The position of the triple fec-bee-liquid point has uncertainty of 2.5 GPa (Ref. 4). The SP melting curve practically coincides
with ours. The fcc-bec transition, according to the SP study, is shown by the thin dashed line. The diamond symbol shows the equilibrium
between bce and liquid established in this study. The triangle shows equilibrium between bce and liquid. The triple bee-fee-liquid point is

located between the triangle and the diamond.

II. METHOD

A description of the molecular-dynamics method can be
found elsewhere.? In short, the molecular-dynamics method
consists of solving numerically the equations of motion for
the atoms, assuming their initial coordinates and velocities,
and a model for the interaction between them. Normally, as
is also the case in our present MD calculations, periodic
boundary conditions (PBC) are applied. PBC means that, if a
particle leaves a computational cell on one side of the cell,
an identical particle enters the cell from the opposite side. I
performed all of the simulations using the package DL_POLY.
The interaction between the atoms of Xe was described by
pairwise effective potential,

6 r a [r\°
= 61’[(1‘”—6<‘> W

where ¢(r) is the energy of interaction between two atoms at
a distance r. The quantities &, r*, and « are adjustable pa-
rameters. I used this potential [Eq. (1)] with the parameters
e/ky=235 K, a=13.0, and r*=4.47 A, where kp is the
Boltzmann constant. This potential has been exhaustively
studied"*> and demonstrated to perform very well. I will use

metric units instead of scaled variables. Use of scaled vari-
ables is justified for two-parameter potentials. Because the
parameter « is not always equal to 13,2! use of scaled vari-
ables might be misleading.

As one can see (Fig. 1), the SP paper suggests that the bee
phase becomes stable first above 4700 K while earlier studies
suggest stability already above 2700 K. To resolve this issue
I decided to perform this study at pressures somewhere in
between those two, namely, in the vicinity of 3400 and 4000
K. Depending on the computed phase assemblages, conclu-
sion on the position of the triple point can be made. To find
the stable phase assemblage, we need to place both bcc and
fcc at the exactly same PT conditions and allow for the tran-
sition from one phase to another. Basically, this is what we
do in a real experiment. We make an observation of the
emerging structure at particular conditions. Let us make
computer “experimental” observations. To that purpose I first
prepare a large sample of liquid Xe. Starting from the fcc
structure created as a 100X 100X 100 multiplication of the
Xe fcc unit cell with four atoms, I simulated it at pressure of
40 GPa and temperature of 6000 K, sufficiently deep in the
PT field stability of liquid Xe (Fig. 1) to avoid complications
related to superheating.?? After that, the resulting liquid
structure was equilibrated at the P=50 GPa and T
=4100 K, slightly above the melting curve (Fig. 1). Thus,
the liquid sample with the size 473 X473X473 A3 con-
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FIG. 2. Temperature during the simulation run as a function of the simulation time. The different parts of the temperature curve
correspond to different processes in the simulation box, as indicated in the legend. The first stage, where the temperature of the system
rapidly increases, corresponds to the growth of both bce and fcc phases. The first flat part of the curve corresponds to the competing
processes of the fcc melting and the bec crystallization. Gradually, the amount of the crystallized bce becomes larger than the amount of the
melted fcc and the temperature goes up again. Finally, the system reaches an equilibrium. This is the state where two phases: the liquid and
the bec, are present, and their amount does not change. The resulting pressure and temperature are shown by diamond in Fig. 1.

tained 4 X 10° atoms. At the same pressure of 50 GPa but at
a somewhat lower temperature of 3700 K, I simulated fcc
and bcc samples. The fcc sample consisted of 256 000 atoms
(40 X 40 X 40 multiplication of the unit cell with four atoms
in the unit cell). Similarly, the bcc sample consisted of
250 000 atoms (50 X 50 X 50 multiplication of the unit cell
with two atoms in the unit cell). That is, the sample sizes are
chosen to meet two conditions. First, they have to be suffi-
ciently large to ensure their growth. Second, they have to be
of about the same size to create the conditions similar to both
solid phases. These solid samples (their final MD simulated
configurations) then were embedded in the box with liquid
atoms. Solid samples were placed in the centers of the upper
(fcc) and lower (bec) parts of the cubic liquid sample. After
the procedure of embedding and excluding liquid atoms, the
total number of atoms in the box was 3984 024. After that,
the system was simulated in the NVE (constant N—number
of particles, V—volume, and E—energy) ensemble, where
the initial temperature was set to 3700 K, about 300 K below
(according to both our previous'*> and SP papers) the melt-
ing temperature. To ensure high precision and conservation
of total energy, the time step was chosen to be equal to 0.5 fs.
This is a very small time step considering the atomic weight
of Xe (130 a.u.). After those preparations, our interference
was over and we just run the simulation for several weeks
accumulating the data.

III. RESULTS AND DISCUSSION

Because the initial temperature of 3700 K was substan-
tially lower than the melting temperature (4050 K) at the
initial pressure within the box (slightly lower than 50 GPa),
both fcc and bee embedded samples started to grow. In prin-
ciple, the relaxation of liquid-solid interface in the initial
steps of the simulation might destabilize the crystallites dif-
ferently. Therefore, it is important to choose large crystal-
lites, as is the case in this study, and to choose the initial
temperature sufficiently low to ensure initial growth of both
phases. The configurational energy of the solid is lower than
the energy of the liquid; therefore, the released energy trans-
forms to kinetic energy and, in turn, increases the tempera-
ture. This is reflected in the fast increase in temperature in
the initial stage of the simulation (Fig. 2). There is a tem-
perature, however, above that only one solid phase survives.
One can see from Fig. 2 that this temperature is reached at
about 3960 K. The analysis shows (see below) that at this
temperature the fcc phase melts. Naturally, the temperature
remains constant at this stage. Any temperature (=kinetic en-
ergy) overshoot is spent right away in transforming the at-
oms from fcc structure to liquid structure. This transition
requires energy (=latent heat of melting). This energy was
gained from the continuing freezing of the bcc sample. If not
for bce phase, the equilibrium would have been established
at the temperature of 3960 K. As soon as the fcc phase is
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FIG. 3. XZ projection of the initial fcc (upper) and bee (lower)
atoms at the time of 0.1 (beginning of simulation) and 5.0 (end of
simulation) ns for the simulation in Fig. 2. In the beginning both fcc
and bcc parts are of the same size and, being more stable than the
liquid, stay intact. At the end of the simulation, the bcc system
remains intact while a substantial portion of the fcc sample has
melted and diffused. Some of the initially fcc atoms remain intact
because they have been captured by the growing bcc sample.

molten, the temperature rises further. Eventually, the tem-
perature becomes constant, fluctuating around the average
value of 4002.6 K. Because the crystallization decreases the
pressure, it fluctuates around the value of 47.6 GPa. I want to
emphasize that it is of secondary importance whether the
phase that melts at lower pressure has a larger or smaller
latent heat compared to the latent heat of the high-
temperature phase. The equilibrium is governed by chemical
potentials of the involved phases, not by their latent heats.
The question whether fcc or bee melts at the 7=3960 K
is answered by the data provided in Figs. 3-5. Figure 3
shows projection of the fcc (upper part) and the bee (lower

PHYSICAL REVIEW B 78, 174109 (2008)
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FIG. 4. (Color online) RDF of liquid, fcc, and bec compared to
RDFs of the initially three-phase (liquid, fcc, and bee) system simu-
lated in Fig. 2. RDFs of the system are given at a number of times
as indicated on the legend. One can clearly see that the structure of
the system converges toward the bcc one. The final RDF is in be-
tween the liquid and the bec, indicating that the equilibrium state is
a two-phase, liquid and bce, system. This is in agreement with the
evidence from Fig. 3.

part) instant configurations at different stages of simulation.
Figure 3(a) shows both solid parts at the stage where both
samples grow. The atoms stay intact, preserving the initial
structure. The atoms, which initially belong to the liquid
phase, are not shown in Fig. 3. Neither are the atoms that
became a part of grown fcc or bec samples. Figure 3(b)
shows the same parts in the end of the simulation. The bcc
part is not changed while the original fcc atoms spread
around in the box. They do not occupy the whole box for one
simple reason—it is already occupied by the enlarged bcc
sample.

Figure 4 is consistent with Fig. 3. Figure 4 shows radial
distribution functions (RDFs) (defined as a density of prob-
ability to find an atom at a certain distance from the given
atom) for liquid, fcc, and bee Xe at the conditions of simu-
lation. It is compared with RDFs of the system calculated at
different times during the simulation. One can clearly see,
particularly at the distances 6.2 and 7.3 A, how calculated
RDFs of the system converge toward the bee structure. The
final RDF at the time of 5 ns represents the RDF of the bcc
and liquid mixtures.

Finally, to dismiss any wrong impressions that the atoms
in the upper part of Fig. 3(b) might comprise the fcc struc-
ture, I computed the RDF for the atoms that originally be-
longed to the fcc crystal. To compute that RDF, I selected the
atoms that were positioned within the sphere with the radius
of 15 A, where the sphere center was placed in the center of
the initial fcc crystal. Then, I checked all distances between
those atoms and the atoms surrounding them within the ra-
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FIG. 5. (Color online) RDF computed for the atoms that com-
prised the bee (solid curve with open circles) and the fcc (solid
curve with diamonds) crystals in the very beginning of the MD run.
These RDFs are compared with liquid RDF (solid curve without
symbols) computed for the initial liquid and bcc RDF (dashed
curve) computed for the initial bee crystal. The RDF, computed for
the innermost part of the initially fcc crystal, practically coincides
with the liquid RDF. The RDF, computed for the innermost part of
the initially bcc crystal, practically coincides with the bcc RDF
This confirms that the fcc crystal is molten while the bec crystal
preserves its structure.

dius of 15 A. This was done for the final configuration only
without averaging over configurations. However, because of
the large number of atoms, the computed RDF is rather
smooth (Fig. 5). Certain small fluctuations can be noted but
they are of no significance. I also plotted the RDF for pure
liquid (in which the original fcc crystal was immersed). One
can see that the former “fcc” atoms are even less structured
than the liquid. This is because of diffusion and, naturally,
smaller density. However, general features of the former fcc
and liquid RDFs are quite identical. This unambiguously
tells us that the fcc crystal is completely molten.

In a similar way, we computed the RDF for the atoms
which originally belonged to the bec crystal. We plotted that
RDF along with the RDF for the original bcc crystal that was
immersed in the liquid. Again, we see that the RDFs are
identical (Fig. 5). This tells us that the bce crystal remains
intact and has not molten.

In a similar way, we performed the N-phase (N=3) simu-
lation at a lower pressure and temperature. Starting from the
temperature of 3300 K at volume corresponding to about
38.5 GPa, we performed the simulation similar to that de-
scribed above including all steps. The resulting temperature
path is shown in Fig. 6. All the stages of the temperature
evolution are similar to that presented in Fig. 2 with the one
difference—during the first flat part of the temperature curve,
unlike that in Fig. 2, it is the bcc phase that melts. Figure 7
demonstrates it very clearly. Analysis of RDFs confirms this
conclusion.

Two final PT points of the bee-liquid and fce-liquid equi-
libria belong to the melting curve obtained by the two-phase

PHYSICAL REVIEW B 78, 174109 (2008)
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FIG. 6. Temperature during the simulation run at the density
corresponding to about 40 GPa at the melting temperature (Fig. 1)
as a function of simulation time. The different parts of the tempera-
ture curve correspond to different processes in the simulation box.
The first stage, where the temperature of the system rapidly in-
creases, corresponds to the growth of both bee and fce phases. The
first flat part of the curve corresponds to the competing processes of
the bee melting and fec crystallization. Gradually, the amount of the
crystallized fcc becomes larger than the amount of the melted bcc
and the temperature rises again. Finally, the system reaches an equi-
librium. This is the state where two phases: liquid and fcc, are
present, and their amount does not change. The resulting pressure
and temperature are shown as the triangle in Fig. 1.

simulations (Fig. 1). The temperature of bcc stability is at
least 700 K below the triple fcc-bee-liquid point as calcu-
lated in the SP paper by the A-integration technique. At the
same time, it is at least 800 K higher than the triple point
determined on the basis of the two-phase method. What
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FIG. 7. XZ projection of the final positions of initially fcc (up-
per) and bee (lower) atoms at the time of 7.0 ns (end of simulation)
in the simulation in Fig. 6. The fcc phase remains intact while the
bce sample has melted.
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could be the reason for this? First, let us discuss the SP
results. One obvious reason is that the SP paper relied on the
calculations of ideal samples while realistic population of
defects at high temperature might be important. Note that in
our simulations such a population was allowed to be estab-
lished during the freezing or melting of the samples, and also
by their 4 orders of magnitude larger size compared to the
samples in the SP paper. Second, the size and length of SP
simulations might be an issue. Finally, the approach em-
ployed by SP is a multistep procedure that accumulates er-
rors at each stage.'* Indeed, the authors of the SP paper
wrote that their error in calculating free energies was so large
that the bce phase could already be stable within their error
at the temperature of 2700 K (Fig. 1). However, Saija and
Prestipino, relying on smooth behavior of their free-energy
curves, dismissed such a possibility. Apparently, the error
was not restricted by the smooth free-energy curves. All of
the aforementioned is not to say that the A-integration
method should be abandoned. However, when energy of
solid phases become very close, one has to be very careful in
achieving the necessary precision.

Now, what could be the reason for the two-phase based
triple point at 2700 K? When composing a two-phase cell,
one has to produce an interface between liquid and solid
parts of the computational cell. There is no way to know this
a priori, and the basic assumption is that the initial exact
adjustment of two parts to each other is not important. In-
deed, it does allow production of a reasonable melting curve.
However, when two solid phases are energetically close to
each other, such adjustment might create certain possibilities
for destabilizing the solid part of the two-phase cell, and this
destabilization might be sufficient in transforming one phase
to another. Perhaps, when placing together fcc and liquid,
some space was left between the two parts and this locally
allowed the decrease in the pressure and, in this way, desta-
bilize the fcc phase in favor of bee phase. This could only be
possible due to rather small number of atoms in the two-
phase simulations. Also, the transformation from the two-
phase fcc-liquid assemblage into single bcc phase during
two-phase simulation occurred from the very beginning of
the simulation. In the presented N-phase simulations, it was
ensured that both phases initially grew; therefore the tran-
sient character of the transition was excluded, unlike to two-
phase simulations.

Finally, the simulations in this paper were performed with
much larger number of atoms than in previous works."!8 It

PHYSICAL REVIEW B 78, 174109 (2008)

was observed that the periodic boundary conditions might
affect properties of solid phases when the number of par-
ticles is low?® because of neglecting of the long phonons. It
could be that such neglect affected the SP results and erro-
neously stabilized the fcc phase up to much higher PT con-
ditions. The impact of small size is likely to be larger on the
SP results because the two-phase simulations were per-
formed for much larger systems than the SP simulations.

The exact position of the triple point remains to be deter-
mined by additional N-phase simulations. However, this is
hardly needed. As one can see from Figs. 2 and 6, the dif-
ferences between melting temperatures of two solid phases
on each figure are close to each other (being somewhat
smaller in Fig. 6). Therefore, the triple point can be, with
reasonable precision, positioned at about 3700 K. This is
basically in the middle between 2700 (Ref. 1) and 4700 K
(Ref. 18) (Fig. 1). I call the approach in this paper the
N-phase method because it is not restricted to the number of
phases. One can place all solid phases in the box with the
liquid of the same composition and in one run, although
long, determine the stability of the most stable high-PT
phase. It is not impossible that even a new phase might grow
at a surface of one of the solid phases.

IV. CONCLUSIONS

I have suggested a method (N phase) in choosing the most
stable solid phase on heating. Unlike the coexistence!?
method, the N-phase method is free from nonhydrostatic
stress. It is not restricted by any number of involved phases.
While N method has never been applied to anything more
complex than a monatomic substance, the introduced N
method can be applied, similar to the two-phase method,? to
substances of any chemical and structural complexity. In a
single run, it allows solving of the problem of finding the
most stable phase. Applying this method, I demonstrated that
the position of the Xe bee-fee-liquid point has to be moved
to about 3700 K on the melting curve (Fig. 1).
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